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1. INTRODUCTION 

Volume integrals associated with the integration of inhomogeneous 

Helmholtz equation are of practical interest in determining physical 

quantities in acoustic, electromagnetic and elastic fields. The inhomo- 

geneous scaler Helmholtz equation takes the following form: 

v24 + a24 = -4lrpQ (11 

where P(E) is the source distribution or density function, V2 and a are 

the Laplacian and wavenumber, respectively. It is well known [1,2] that 

a particular solution to Eq. (1) is: 

q = ~(~'1 R -1 exp iaR dV' 

in which (4nR) -1 exp iaR is the free space Green's function, and Cl is the 

region where the source is distributed. The source distribution function 

p($ can in general be either expanded or approximated in a polynomial 

form and hence p(zl) is normally written as 

P (:‘I = (x’p (y’p (2’) v 

where X, IJ, v are integers. The integration of the vector Helmholtz 

equation is analogous, [2]. 

The reduction of time harmonic fields of frequency w in the acoustic 

and electromagnetic fields to that of integrating the inhomogeneous 

Helmholtz equation over a given volume can be found in many standard texts 

[3,41. A formulation that leads to the required form of volume integration, 

(31 



Eqs. (2,3) such that the elastic fields can be determined has recently been 

given in [S-7]. Using the dynamic version of the Betti-Rayleigh reciprocal 

theorem, an integral representation of the displacement field ui in an 

elastic medium containing an inhomogeneity can be given in terms of the 

eigenstrains E?. (11 
=I 

and eigenforce IT; as: 

urn&‘) = - C jkrs 'jm,k' W'U (r r'l ~~~ *(+) dV 

n (4) 

where g. 
3m 

are the spatial part of the free space Green's tensor function. 

For a linear isotropic elastic medium, 

o2 6 exp iBR 
jm 

I-- 
R 

_ [""P ; R _ exp i" R ] ,jm ] (51 

in which p o is mass density, a and B are wavenumbers for longitudinal and shear 

waves, respectively. Expanding the eigenstrains and eigenforces in a poly- 

nomial of position vector2 yields: 

=A.+A 
J jk 'k + Ajkl XkXR + . . . (ha1 

E;~(L) = Bij + Bijk xk + BijkL xkxa. + . . . 

and substituting it and (5) in (4), the displacement field is found to be 

urn(~) = fmj(;) A. + f 
3 mjk(~) Ajk + '.. 

+F mij (~1 Bij + Fmijk(~ Bijk + . . . 

WI 

(7) 



where 

41rPoW2 f mjk(r) = -B2 @k ~mj + ek,mj - $k,mj 

--- 

4rrpow2 Fmij (rl = - [ha2 JI,, ‘ij + 2~ B2g,ibrnj - 2~ JI,,ij + 2~ ~,,ij] 

4npow2 F mijk(r) 

-2' 'k,mij + 2p @k,mijl 

Here, X, P are LamG's constants, and 

$(r) = , R-l exp(iaR) dV', iif 
R 

Qk(r) = ~ 
I ff 

xiR-' exp(iaR) dV' , 

R 

'kl...s = I I I 
"i";r. ..x;R -1 exp(iaR) dV', 

n 

@J(r) = JJJ R-l exp(iBR) dV', 

R 

akb) = 111 xiR -' exp(i@R) dV', 

R . . . 

JJJ 
1 

'kl...s = xix;, . . .xSR -' exp(iBR) dV'. 

si 
This paper presents results for the volume integrals over a region 

(84 

CabI 

(8~) 

Pa) 

(-1 

@cl 

(9d) 

(gel 

(9f) 

that is either an ellipsoid, a finite cylinder or a rectangular parallelpipe 
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with semi-axes al, a2 and a3' Fig. 1. The integrals in (9) are subsequently 

referred to as the #-integrals and they are obtained in series form by expanding 

R-l exp (iaR) in appropriate Taylor series expansions for regions r > r' and 

r < r', and by using the multinomial theorem with also the assistance of the 

classical result of Dyson [8] in the case of an ellipsoid. Certain derivatives 

of the Q-integrals that are of interest are also presented. 

Professors C. P. Yang and C. Saltzer of the Department of Physics and 

Mathematics at The Ohio State University, respectively, participated in many 

helpful discussions. 

2. SERIES REPRESENTATION OF THE O-INTEGRALS 

Let R -1 exp iaR be expanded in a Taylor Series expansion for ?l as 

R-l exp iaR = 
n=O 

+ [xi &Jn[r-l exp iar] , 

for r > r' 

and in a Taylor Series expansion for i! as 

R-l exp iaR = i C-lln 
n=O 

-7 (xi $7)” [ (r’>-l exp iart] , 

(101 

(111 

for r c r' 

in which the summation convention is observed and i = 1,2,3. 

Employing the multinomial theorem as suggested in Ref. [l], 

the o-integrals can be explicitly written as triple sums: 

WI” n 
4, (21 = #a 

n=O J?=O k-0 11! K! (n-k-k)! '* ax II k n&-k ay a2 

l ',II (X1>" (~'1~ (z')~-'-~ p(x',y',z') dV' , 

for r > rl 

4 
(12) 



and 

@< (21 = 11 yk rn-2-k . 
n=O 11=0 k=O 

exp iar' \ 
n-g-k r' f 

dV' , 

The Taylor series representations given in Eq. (10) and Eq. (11) 

converge for the region r > r' and r < r', respectively. The 

integral 0, (,r) in Eq. (12) is normally used to evaluate physical quan- 

tities measured at large distance from the region R. The apparent singu- 
-1 -2 larities present in Eq. (13) appear as I?n E, E , E ,... where E is a 

small positive number. These singularities disappear, however, if E is 

taken to be the radius of a sphere centered around the origin. In evalu- 

ating Q< (z) f or an ellipsoid, care must be taken in determining the con- 

tribution to the integral from the lower limit E. A further note on this 

is given at the end of Section 3. 

3. INTEGRATION OVER AN ELLIPSOIDAL REGION 

The integrals in (12, 13) are of either one of the following forms: 

0' = 1;' (x')' (Y,)~ (z')' dV' , 

QS = JJl P(X’,Y’,Z’) a” 
R axfLayfkaZf n-!Z.-k 

8 = JJJ P(X’,Y’,Z’) a” 
R axteay~kaz~n-'-k 

(13) 

(14) 

(15) 

(16) 
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These integrals can be further evaluated as follows: 

(al 0' = 111 (x')~ (Y*>~ (z')~ dV' 
Q 

I al 
f+l g+l h+l 

a2 a3 Nf/2)Ng/2)R(h/2) 
(2m+3) R(m) (171 = 

0 Tf any one of the superscript power f,g, or h is odd. 

where a 1' a2' a3 are the axes of the ellipsoid, and 

2m = f +g+h 

(2m)! R(m) = - m! 

This result was first obtained by Moschovidis [9]. 

(b) n = 0, 0': 

2 - 111 p(x',y',z') . 
sin ar' 

r' dV' 
R 

= ,;(, p(x',y',z') T(J) mD?& (rt)2m-2 dV' 
m=l 

= tn~l(-ll 
m-1 a2m-1 

(2m 'm,p 

where 

S m,p = I;I' (xl)' (y')' (z*)~ (~'~+yf~+z~~)~-~ dV' 

(181 

(191 

x+1 u+l v+l 
al a2 a3 4rr = 
(x+~+v+2m+l) (X+p+v+2m-1) 
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: 

2ml 2m2 
(m-l)! 
ml!m2!m3! ;: 

a2 a3 
2m3 

(2ml+A)! (2m2+u)!(2m3+v)! [2(mbl)+X+u+v]/2! 

ml,m29m3 ml+X)/2! (2m2+u)/2! (2m3+v)/2! [2(m-l)+X+p+v]! 

= 0, if L,u, or v 

in which the multinomial 

ml+m2+m3 = m-l , if )r,u,v all even, Wal 

odd. (19b) 

formula 

= c 
mlsm2,m3 ml ! $1 m , w12ml (y9)2m2 (z')2m3 

3' (20) 

is used. In (20), the sums are taken over all non-negative integers m 1' m2 
and m3 for which ml+m2+m3 = m. 

(c) n = 0 , 8 

8 = 111 p(x',y',z') co;,ar' dV' 
s-l 

(21) 

= mFo (-l)m &r,, (x’)’ (y’)’ (z’)’ l + dV' 
R 

Using the multinomial formula and letting the integral in (21) be denoted by 

C 
m,p = !isI (x’)x be (z’P w12m-1 dV’ 

The volume integral in Eq. (22) may be viewed as the potential of variable 

densities observed at the origin,_r=O. Applying the results on volume 

7 



integration over an ellipsoid given by Dyson [8],Eq. (22) can be 

written as 

c = 1 (ml ! 
m4 mlsm2,m3, ' "laZa3 l ml! m2! m3! al 

2ml+X 2m2+p 
a2 a3 

2m3+v 

OD 

I 
JI m+p ax 

m+p 

1 

1 . 
2(m+p)(m+p)!(m+p+l)1 

IS - 
0 2 a:+$ 

d$ 
l Q , if X,II,V, all even 

= 0 , if X,p,v, is odd (23.b) 

where 2p = (A+lr+v) 

d2L . 
dx'2L1 dyf2'2 &.f2+ ' 

2ml+? 
a2y 

, 

( ) 

2m2+u 

2 f 
a +JI 2 

(23.a) 

(24) 
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in which the sums are taken over non-negative values of Cl, E2, t3 for which 

II1 + E2 + c3 = 11. Using the definition of 6', (24), and noting that 

F = (x') 2ml+A 
(Y’> 2m2+lJ(z,12m3+v 

a 2' ( ) 
2m3+v 

3 .- 
a$+$ 

it can be easily shown that 

6 m+P 

= h+pl ! 
(ml+X/2)!(m2+~/2)!(m3+v/2) ! (2ml+X)!(2m2+p)!(2m3+v)! l 

. (.$“‘” (#2+‘i’( g)“““” 

Finally, for n = 0 

8 = ,Fo (-Urn .& cmtp = 

where 

(25) 

(26) 

m! (2ml+A)!(2m2+p)!(2m3+v)! 
c = 
m,p 1 

ml,m2,m3, ml!m2!m3! (ml+X/21 !(m2+p/2)! (m3+v/2)! 



al 
2ml+,I+l 

a2 
2m2+p+l 

a3 
2m3+w+l 

. . 
22m+2p (m+p+l)! 

0 J, m+P d$ 
. (ai+$)ml+X/2 (a:+$)m2+u'2 (a~+$)m3+v12Q ' 

OS = ~;lp(x',Y',z') ax,fiaya:az,ne~-k Si;,ar' dV' 

where . 

n-ll-k= (rt)2m-2 dV' 

= c 
(m-l)! (2ml)! (2m2)! (2m3)! 

. 
ml ,m2,m3 II! k! (n-E-k)! 

. J;’ (xtlA+2mi-~ (y,lu+2m2-k (Z,lv+2mw+fi+k dV, 

(27) 

(281 

WI 

in tiich the multinomial formula is used and m 1' m2* m3 are summed over all 
integers greater than and equal to unity and m +m +m 123 are summed over all 

integers greater than and equal to unity and m +m +m 1 2 3 = (m-13. The integral 

in (29) can be obtained by using the formula given in (17), and is easily 

shown to be 
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S" 
(m-l)! (2ml)I (2m2)! (2m3)! 

m,p = c a! k! (n-t-k)! 4n 
ml ,m2,m3 

al 
A+2ml-a+1 

a2 
u+2m2-k+l 

a3 
v+2m3-n+l+k+l 

. 
(2p+2m+l-nj (2p+2m-n-1) . 

=o 

if (x-e), (u-k), (v-n+L+k) all even 

if (A-L), (p-k) or (w-n+ll+k) is odd 

where 

2p = A+u+v 

(e> n 0, ac # 

8 = ‘ii’ P(x’,Y’,z’) ax,,;;,kaz,nmQ cosr:r’ dV’ 

where 

(30.a) 

(30.b) 

(31) 

WI 
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When n # 0, it is not as easy to find a compact form for these integrals. 

For the determination of the elastodynamic fields of an ellipsoidal inhomogeneity 

as formulated in [6,7] it is sufficient to determine a<(r) for a finite number 

of n's in determining the B.., 8.. l]k' and A., A. 7 Ik' -'- 
in [6,7]. For example, 

11 * 
LI if it is necessary to determine the eigenstrains E.. up to a second order 11 

distribution, it is then sufficient to find ac for 1 < n < 6. - - 

The integral a,(r) in (13) can be replaced for n = k by 

where 

The substitutions of the derivatives of (r') 2m-1 in Eq. (34), 

lead to integrals that can be easily evaluated by using 

Eqs. (23,24,25), for the cases m > 1, k = 1, 3 and m > 2, k = 4, etc. - 
Special attention must be given to the cases m = 0, k = 2,3, and m = 0,l 

k = 4, 

Using the notations given in Ref.[lO] and noting that 

2 dV' = dx' = dr' dS = dr'*r' dw , 

(33) 

(34) 

(35) 

we obtain 

where 

r'(l) = 
1 l/2 

0 
i? 

12 
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8 = &f/a: , Iii = xi/r' . (371 

and f = 0, e = 1 due to the fact that here we consider the source point 

being situated at the origin, i.e. 2 = 0. Volume integrals associated with 

Eq. (32). _ _ 1 < n c 4, can be written into surface integrals by using Eq. (35). 

and finally reduced to simple integrals through the work of Routh [ll], e.g. 

lLJo*(r')‘3 dV' = //p l (r')'3 l dr' l i-l2 l du 

= Ijj P - (r')-l dr' dw 

If p = 1, r11, p. 9011, 

I/J (rfle3 dV' = /I{Ln r'(ai) - Ln ~1 dw 
1 

= Al 

J;(, (r')-' dV' = -iJl{[r'@..]-2 - em21 dw 
c 

= -$/ g du + A2 

2a 1 =a-. 
3 a.a. 

+A 2 
11 

(38) 

(391 

The surface integral of the type II II: !Z; IL: g-l dw can be reduced to simple 
c 

integrals as well by using the work of Routh [7] in the same manner as 

listed in Ref. [6] and therefore will not be repeated here. me constants 

13 



The constants Al and A2 are equal to 4a(llna - 'ln~) and +(27r/3)(eS2), 

respectively for a sphere of radius a, where E is a small positive number. 
-1 -2 The coefficient of these types of terms, En E, E , E , . . . . in the Q-integral 

can be shown to be identically zero in a straight forward manner if $I is a 

sphere. When .9 is an ellipsoid, the lower limit of integration should be taken 

from the surface of a small sphere with radius E, (38,39). The contribution 

to the &integral from the lower limit can therefore be identified as zero. 
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x.. 
3 matrix: A, p ; ,, 

inhomogcncity : 1; II*; p * 

/ 

I 
I a, 
I 3 

h incident 
lC3VC 

Fig. 1 An ellipsoidal region 

of integration. 
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